
dVegas User's Guide

Nikolas Kauer
<nkauer@users.sourceforge.net>

Version 1.1.0, January 2002

Table of Contents

Chapter 1: Introduction

1.1: About dVegas

1.2: Platform notes

1.2.1: GNU Compiler Collection (GCC)

1.2.1.1: Intel/Linux

1.2.2: Commercial compilers

1.2.2.1: Compaq/DEC

1.3: How to get dVegas



1.4: Installation

1.4.1: Dependencies

1.4.2: Configuration

1.4.3: Build

1.4.4: Test

1.4.5: Installation

1.4.6: Troubleshooting

1.5: Compiling and Linking with dVegas

1.5.1: C++

1.5.2: Fortran

1.5.3: C

1.6: Support

1.7: Porting dVegas

1.8: LGPL license

Chapter 2: C++ Class

2.1: Constructor and main member functions

2.1.1: Constructor

2.1.2: pl_vegas

2.1.3: Accessing results

2.1.4: Saving and restoring the state of a Vegas object



2.2: Sample program

2.3: Limit macros

2.4: Numeric types

2.5: Enumerations

2.6: Vegas interface

2.7: Vegas implementation

Chapter 3: Fortran Interface

3.1: VEGAS mode (default)

3.1.1: Subroutines

3.1.2: Sample program

3.2: GetPut mode

3.2.1: Subroutines

3.2.2: Sample program

Chapter 4: C Interface

4.1: Functions

4.2: C header



4.3: Sample program

Chapter 5: Parallel dVegas

5.1: Shared memory multiprocessor machines
(SMP)

5.1.1: Intel/Linux

5.1.2: Alpha/Tru64 Unix

5.2: Workstation clusters

Chapter 6: Python Class and
Interface

Chapter 7: Frequently Asked
Questions

Chapter 8: References



Next chapter●   

Table of contents●   

Chapter 1: Introduction

1.1: About dVegas
dVegas is a library for adaptive Monte Carlo integration based on the VEGAS algorithm
invented by G.P. Lepage. The "d" in dVegas stands for "discrete" and "decoded", because
it extends Lepage's original VEGAS program in that it can not only handle continuous,
but also discrete dimensions. dVegas is written as a C++ class in an object-oriented
programming style, in an attempt to make its structure transparent and manifest. dVegas
code was written to be robust and accessible, thus being more suited for customization
and extension than the somewhat cryptic "black box" code of the original VEGAS
program and its derivatives. For this purpose, dVegas was rewritten from scratch, with
carefully chosen, meaningful variable names and comments. Its functionality is also
made available to Fortran and C programmers through special interfaces. A parallel
dVegas library is provided for use on multiprocessor machines.

A detailed description of G.P. Lepage's algorithm, its implementation in dVegas, as well
as comparisons with and information about several earlier implementations, can be found
in the references listed in section 8.

1.2: Platform notes
For up-to-date information regarding your platform consider visiting the dVegas Web
site:
http://hepsource.org/dvegas/platforms.html

1.2.1: GNU Compiler Collection (GCC)

The dVegas libraries will compile and link with recent releases of the GNU compiler
collection (GCC). To build all libraries g++, g77 and gcc are needed.

1.2.1.1: Intel/Linux

On Intel/Linux 2.2.5, gcc version egcs-2.91 (formely egcs-1.1.2) is known to work. Use
the -fno-second-underscore option with g77.

http://hepsource.org/dvegas/platforms.html


1.2.2: Commercial compilers

1.2.2.1: Compaq/DEC

On Compaq Alpha platforms, the Compaq (formerly Digital) C++, Fortran and C
compilers (cxx, f77, cc) should work. Success has been reported for Compaq C++ V6.2
and Compaq Fortran V5.3 on Alpha/Tru64 Unix 4.0F.

1.3: How to get dVegas
The distribution can be downloaded here:
http://sourceforge.net/projects/hepsource/

1.4: Installation
Obtain the source distribution as described in section 1.3. Then unpack the distribution
tarball, for example with
gunzip -c dvegas-1.0.0.tar.gz | tar xf -
and change into the top directory. Installation proceeds in four steps

Configuration: ./configure [--enable-fortran] [--enable-c]
[--enable-getput]

1.  

Build: make2.  

Test: make test3.  

Installation: mv lib/* destdir4.  

which are described in more detail in the following sections.

The installation process works best with GNU make. If GNU make is available on your
system I recommend you use GNU make instead of the vendor-supplied make program.
If you have to use the latter consult section 1.4.6 for more information. If you can use
GNU make, make sure that it is found before the vendor-supplied make and named
'make', so that the configure script can automatically detect it. You can use these
commands, for example for tcsh:
setenv PATH ~/bin:${PATH}
ln -s /usr/local/bin/gmake ~/bin/make

1.4.1: Dependencies

dVegas needs random numbers to perform the numerical integration. The library, hence,
relies on a random number generator that generates one or more random number streams.

Currently dVegas uses the CLHEP Random package to generate pseudo random
numbers. If the CLHEP header files and library are installed in your compilers' search

http://sourceforge.net/projects/hepsource/
http://wwwinfo.cern.ch/asd/lhc++/clhep/
http://wwwinfo.cern.ch/asd/lhc++/clhep/manual/UserGuide/Random/Random.html


paths and you are using GNU make everything should be automatic. If you do have the
CLHEP library and header files installed, but they are not automatically included by the
linker, just set the variables LIBDIRCLHEP and INCLDIRCLHEP in the top-level
Makefile. Otherwise, you need to obtain a CLHEP distribution for your platform (or the
source code) from

http://wwwinfo.cern.ch/asd/lhc++/DISTRIBUTION/clhep.html

first and install it on your system (or ask your system administrator to do it). If you're not
using GNU make and your compilers do not find the CLHEP files automatically, you'll
have to modify all Makefiles. See section 1.4.6 for details.

Note that dVegas is not tied to CLHEP, and other random number generators can be
integrated easily if the need arises.

1.4.2: Configuration

Remove traces of previous configurations with
make distclean

Then configure your distribution with
./configure [options]

To see a list of all options with brief descriptions do:
./configure --help

Special options for dVegas:

--enable-fortran

build Fortran interface

--enable-c

build C interface

--enable-getput

build "get/put" Fortran or C interface (serial only)

--with-gnu

use GNU compiler collection

The options --enable-fortran and --enable-c are exclusive. For details about
--enable-getput see section 3.2. It is currently only available for the Fortran
interface, but can be made available for the C interface on demand. The configure script
tries to detect a viable compiler combination automatically. If you want to use GCC, but
it is not automatically selected, you should specify the --with-gnu option when
running configure. If you want to select the compilers used to build dVegas manually see
section 1.4.6 for more information.

http://wwwinfo.cern.ch/asd/lhc++/DISTRIBUTION/clhep.html


1.4.3: Build

make
builds one or more static libraries and copies them into the lib subdirectory. Consult
section 1.4.6 if something goes wrong here.

1.4.4: Test

The libraries built in the previous step can be tested with small sample programs with
make test

This command creates a test executable for every library and tries to run it on your
system. If the exit code indicates an error occured, the test fails. The diligent reader is
encouraged to compare the obtained results with the expected results, which are recorded
in the source files under subdirectory test.

1.4.5: Installation

The final installation step is to move the libraries in subdirectory lib into the library
search path of the compiler (or use the -L linker flag to include this directory in the
search path). Note that there is no make target install.

If you plan on using the C++ or C libraries you also have to copy the header files in
subdirectory include to a suitable directory, so that the compiler can find them.

1.4.6: Troubleshooting

For up-to-date information about build problems and solutions consult the dVegas Web
site:
http://hepsource.org/dvegas/troubleshooting.html

If you are using a vendor-supplied make that supports the export keyword, then just
uncomment the corresponding line in the top-level Makefile. Otherwise certain variables
will not be exported and you may have to define them in not only in the top-level
Makefile, but also in the Makefiles in subdirectories. This applies particularly to the
variables INCLDIRCLHEP, LIBCLHEP and LIBDIRCLHEP if the CLHEP files are not
found automatically.

You can preselect specific compilers on your system to be used to build dVegas, by
defining these variables:
CXX CXXCPP F77 CC

The first two have to be defined. Here's an example:

CXX=cxx CXXCPP=/lib/cpp F77=f77 ./configure --enable-fortran

http://hepsource.org/dvegas/troubleshooting.html


1.5: Compiling and Linking with dVegas

1.5.1: C++

Fast track: read last paragraph

Compiling and linking C++ programs with dVegas should be straightforward. Just
append -ldvegas to the compiler command. If your compiler cannot find the library
you need to specify the path first: -Lpath -ldvegas

If you want to run your program in parallel mode on a multiprocessor machine, you have
to link with the pthreads version -ldvegas_r. Some compilers will automatically link
with the right version if you have -ldvegas specified. See section 5.1 for
platform-specific details. Depending on the compiler you might have to link explicitly
with libpthread or set a compiler flag like -pthread.

If the dVegas library utilizes CLHEP---typically it will---you also need to link to the
CLHEP library. You need to specify the library after the dVegas library like in this
example: -ldvegas -L/usr/local/lib/CLHEP -lCLHEP

To get started just run make test in the top-level directory. It will compile and link
one or more test programs displaying the commands it uses. If the tests pass you can most
likely just adapt these commands for your own programs.

1.5.2: Fortran

Fast track: read last paragraph

Compiling and linking Fortran programs with dVegas is slightly more complicated. You
need to link to the Fortran dVegas library: -lf_dvegas or -Lpath -lf_dvegas. In
addition the Fortran dVegas library needs to resolve references to standard C++ libraries
that have to be specified after it, e.g. -lf_dvegas -L/usr/lib/cmplrs/cxx
-lcxxstd -lcxx -lexc

If the dVegas library utilizes CLHEP---typically it will---you also need to link to the
CLHEP library. A complete appendix will then look something like this: -lf_dvegas
-L/usr/local/lib/CLHEP -lCLHEP -L/usr/lib/cmplrs/cxx
-lcxxstd -lcxx -lexc

If you want to run your program in parallel mode on a multiprocessor machine, you have
to link with the pthreads version -lf_dvegas_r. Some compilers will automatically
link with the right version if you have -lf_dvegas specified. See section 5.1 for
platform-specific details. Depending on the compiler you might have to link explicitly
with libpthread or set a compiler flag like -pthread.



To get started just run make test in the top-level directory. It will compile and link
one or more Fortran test programs displaying the commands it uses. If the tests pass you
can most likely just adapt these commands for your own programs. An attempt is made to
figure out the right standard C++ libraries automatically. If the test programs don't link on
your system search for comments in section 1.2. If you don't find answers there, see
section 1.6.

1.5.3: C

Fast track: read last paragraph

Compiling and linking C programs with dVegas is slightly more complicated. You need
to link to the C dVegas library: -lc_dvegas or -Lpath -lc_dvegas. In addition the
C dVegas library needs to resolve references to standard C++ libraries that have to be
specified after it, e.g. -lc_dvegas -L/usr/lib/cmplrs/cxx -lcxxstd
-lcxx -lexc

If the dVegas library utilizes CLHEP---typically it will---you also need to link to the
CLHEP library. A complete appendix will then look something like this: -lc_dvegas
-L/usr/local/lib/CLHEP -lCLHEP -L/usr/lib/cmplrs/cxx
-lcxxstd -lcxx -lexc

If you want to run your program in parallel mode on a multiprocessor machine, you have
to link with the pthreads version -lc_dvegas_r. Some compilers will automatically
link with the right version if you have -lc_dvegas specified. See section 5.1 for
platform-specific details. Depending on the compiler you might have to link explicitly
with libpthread or set a compiler flag like -pthread.

To get started just run make test in the top-level directory. It will compile and link
one or more C test programs displaying the commands it uses. If the tests pass you can
most likely just adapt these commands for your own programs. An attempt is made to
figure out the right standard C++ libraries automatically. If the test programs don't link on
your system search for comments in section 1.2. If you don't find answers there, see
section 1.6.

1.6: Support
Problem reports, comments and suggestions regarding this dVegas distribution should be
emailed to nkauer@users.sourceforge.net

mailto:nkauer@users.sourceforge.net


1.7: Porting dVegas
If you plan to test this dVegas distribution on a new platform or with a new compiler,
please contact nkauer@users.sourceforge.net.

1.8: LGPL license
This library is free software; you can redistribute it and/or modify it under the terms of
the GNU Lesser General Public License as published by the Free Software Foundation;
either version 2.1 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.

You should have received a copy of the GNU Lesser General Public License along with
this library; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite
330, Boston, MA 02111-1307 USA

Next chapter●   

Table of contents●   

mailto:nkauer@users.sourceforge.net


Next chapter●   

Previous chapter●   

Table of contents●   

Chapter 2: C++ Class

2.1: Constructor and main member functions

2.1.1: Constructor

Vegas(int cdim, int nsdim, int cnbin, int ddim, int adim,
      const int nvals[], int fn, Integrand fxn = 0, int ncpu = 1);

cdim: number of continuous dimensions
nsdim: number of non-separable continuous dimensions (first nsdim dimensions)
cnbin: number of bins for each continuous dimension
ddim: number of discrete dimensions
adim: number of auxilliary dimensions (no adaptation)
nvals[]: number of values for each discrete dimension (see below)
fn: number of functions to integrate, (weights are adapted for first function)
fxn: pointer to function (see next section)
ncpu: number of CPUs, default: 1 (see section 5.1)

The default integration/summation range is

●   for continuous dimensions: (0, 1)



●   for discrete dimensions: {0, 1, 2, ..., nvals[dim]-1}

Random numbers in (0, 1) are provided to facilitate the addition of auxilliary dimensions that are not VEGAS driven.

The parameters ddim or adim can be set to zero if no discrete or auxilliary dimensions are needed.

The parameters of a constructed Vegas object can be modified with two member functions:

void set_parameters(int cdim, int cnbin, int ddim, int adim, const int nvals[], int fn);

void set_integrand(Integrand fxn);

Note that these functions are questionable from a design perspective and may not be supported in the next major version, i.e.
versions 2.0.0 and higher.

If you plan to use the get and put methods (see section 2.6) directly rather than the loop method, just pass 0 for fxn.

2.1.2: pl_vegas

If a function pointer fxn of type Integrand:

typedef void (*Integrand)(const double x[], const int k[], const double& wgt,
                          const double aux[], double f[]);

is passed to the constructor or set_integrand then the function pl_vegas runs through iterats iterations with
ncall shots each when called, modeling the behavior of Peter Lepage's VEGAS:

void pl_vegas(Vegas& vegas, int64 ncall, int iterats, int init = 0);

The array x[] contains the random numbers for the continuous dimensions, the array k[] contains the random numbers for
the discrete dimensions, the array aux[] contains the auxilliary random numbers. The VEGAS weight (For each iteration the
sum of the weights is normalized to 1.) is passed in variable wgt, so that it can be passed on to functions that fill histograms,
for example. The function *fxn is expected to fill the array f[] with the function values that correspond to the arguments



x[0], x[1], ..., k[0], k[1], ... and aux[0], aux[1], ... The value of the first function is assigned to f[0]. The
integration is optimized for this function according to the VEGAS algorithm. Secondary functions can simultaneously be
integrated and their values are expected to be returned as f[1], f[2], etc.

The parameter init has the same meaning as in the original VEGAS program:

init = 0: fresh start (no prior information)
init = 1: use previous adaptation info, but discard shot data
init = 2: use previous adaptation info and build on previous shots data

The generic action for a single iteration is encapsulated in the member function:

void loop(int64 ncall_);

Note that ncall's type is int64, corresponding to a 64-bit integer. int64 might be a typedef to long int or long long int
depending on your system. You can find that out by looking at the values of the macros SIZE_LONG and
SIZE_LONG_LONG.

Both, class Vegas and the associated function pl_vegas are enclosed in namespace MonteCarlo.

2.1.3: Accessing results

Methods are provided to obtain the results/statistics for each integrated function fn (since the last adaptation):

double get_integral(int fn) const ;

double get_error(int fn) const ;

double get_redchi2(int fn) const ; // "reduced chi^2" = chi^2/(nr of estimates-1)

int get_niter() const ; // number of iterations (estimates)

or accumulated over all iterations:



double get_acc_integral(int fn) const ;

double get_acc_error(int fn) const ;

double get_acc_redchi2(int fn) const ;

int get_acc_niter() const ;

2.1.4: Saving and restoring the state of a Vegas object

The state of a Vegas object can be saved to file and restored later with the following methods:

void save(const char* filename = "vegas.dat") const ;

void save(std::ofstream& fout) const ;

void restore(Integrand fxn, const char* filename = "vegas.dat");

void restore(Integrand fxn, std::ifstream& fin);

void restore(std::ifstream& fin); // integrand set with set_integrand()

Saved are the parameters that can be set with set_parameters and all weights. This does not include the function pointer
of type Integrand and the number of CPUs. The restore method does not check if the function to be integrated is the
same as when save was called.



2.2: Sample program

#ifdef NO_CXX_HEADERS_FOR_C_LIB
#include <math.h>
#else
#include <cmath>
#endif
#include "dvegas.h"

#ifndef NO_CXX_HEADERS_FOR_C_LIB
// <cmath>
using std::pow ;
using std::sqrt ;
using std::exp ;
#endif

void fxn(const double x[], const int k[], const double& wgt, const double aux[], double f[])
{
  f[0] = x[0]*x[1]*x[2]*x[3]*x[4]*pow(2.0,5);
}

void fxn1(const double x[], const int k[], const double& wgt, const double aux[], double f[])
{
  if (k[0] < 99)
    f[0] =   1 * x[0]*x[1]*x[2]*x[3]*x[4]*pow(2.0,5);
  else if (k[0] == 99)
    f[0] = 100 * x[0]*x[1]*x[2]*x[3]*x[4]*pow(2.0,5);  
}

int main()



{
  using MonteCarlo::Vegas ;
  using MonteCarlo::pl_vegas ;

  int nvals[2];
  Vegas vegas(5, 50, 0, 0, nvals, 1, &fxn);
  pl_vegas(vegas, 100000, 2); // result: 1.0

  nvals[0] = 100 ;
  vegas.set_parameters(5, 50, 1, 0, nvals, 1);
  vegas.set_integrand(&fxn1);
  pl_vegas(vegas, 100000, 1); // result: 199.0, factor sqrt(100)=10 error reduction with discrete weights
  vegas.save();
  pl_vegas(vegas, 100000, 1, 1);

  nvals[1] = 3 ;
  vegas.set_parameters(5, 50, 2, 0, nvals, 1);
  pl_vegas(vegas, 100000, 2); // result: 597.0

  vegas.restore(&fxn1);
  vegas.save("same.dat");
  pl_vegas(vegas, 100000, 1, 1); // result: 199.0
}

2.3: Limit macros
VEGAS_CONT_DIMMX

maximum number of continuous dimensions, default: 20

VEGAS_CONT_NBINMX



maximum number of bins for continuous dimensions, default: 50

VEGAS_DISC_DIMMX
maximum number of discrete dimensions, default: 5

VEGAS_DISC_NBINMX
maximum number of values for discrete dimensions, default: 100

VEGAS_AUX_DIMMX
maximum number of auxilliary dimensions (no adaptation), default: 5

VEGAS_FNMX
maximum number of functions to integrate, default: 5

2.4: Numeric types
The following type definitions are used in the class and function definitions:

#if SIZEOF_LONG == 8
typedef long int    int64 ;
#elif SIZEOF_LONG_LONG == 8
typedef long long int int64 ;
#endif

typedef double      float64 ;

The type int64 is a 64-bit integer and is used to allow a maximum number of 9,223,372,036,854,755,807. (The typical 32-bit
integer has a maximum of about 2 billion, which I found to be too small in some cases to achieve the desired precision.) The
type float64 is a 64-bit floating point number and is used in some member functions for variables that accumulate a large
number of temporary results (of the order of ncall). 32-bit floating point numbers provide only a precision of typically 7
decimal digits, which can be insufficient when adding about 100 million numbers or more. For 64-bit floating point numbers
with a precision of typically 15 decimal digits this problem occurs roughly at 10^16 additions. On most systems the type



double corresponds to 64-bit floating point numbers. In rare cases float64 might correspond to long double. (Note
that these problems can also occur in histogram packages.)

In a future dVegas release the issues addressed above will be double-checked in the pre_loop member function, and a
warning or error will be issued when problems could arise. This kind of checking is facilitated in C++ by specializations of the
numeric_limits template presented in <limits>. See section 22.2, Numeric Limits, in Bjarne Stroustrup's The C++
programming language, 3rd ed.

2.5: Enumerations
The enumeration Sampling specifies sampling techniques:

enum Sampling { importance, stratified } ;

Currently only importance sampling is implemented, since I use dVegas for calculations with high numbers of dimensions.
Additional stratified sampling can lead to a substantially improved efficiency in low dimensions (cdim = 1, ..., 4) and will be
implemented if the need arises.

The enumerations Reset and Info hold sets of options. They allow to specify elementary or composite options by name
rather than a crypic (hexadecimal) number. The state of each elementary option is stored in a bit that is part of a bit set of
related options.

The enumeration Reset specifies reset options:

enum Reset { r_data=0x1, r_weights=0x2, r_none=0x0, r_all=0x3 };

The enumeration Info holds a set of options for the info member function, which prints out information about the most
recent iteration, as well as accumulated results and statistics. The info member function is a primary target for customization
and the options listed below are intended to give an idea of the possibilities:

enum Info  { i_spec     =0x0001, i_int     =0x0002, i_adapt     =0x0004, i_grid     =0x0008,
             i_spec_more=0x0010, i_int_more=0x0020, i_adapt_more=0x0040, i_grid_more=0x0080,



             i_spec_all =0x0011, i_int_all =0x0022, i_adapt_all =0x0044, i_grid_all =0x0088,
             i_all_short=0x000f, i_all_long=0x00ff };

Here, spec relates to information like parameters and settings, int to information about the integration itself like results,
errors and statistics, adapt to information about the progression and efficiency of the adaptation cycles, and grid options
would print out weight data (grid data for continuous dimensions). In each category the amount of information displayed can
be regulated, e.g. by appending _more and _all.

In this release the Info argument of the info member function is just a dummy argument and the function outputs
information in a style that I found useful. Based on feedback from other users a variety of output options will be implemented
in future dVegas releases.

2.6: Vegas interface

class Vegas 
{
public:
  void loop(int64 ncall_);  // accumulate data
  void* loop_worker() const ;  // thread function for parallel mode
  void adapt(); // adapt weights
  void reset(Reset flag); // discard data
  void info(Info flag) const ;  // print info

  void get(double x[], int k[], double* wgt_, double aux[], int icpu = 0);
  void put(const double f[], int icpu = 0);
  void pre_loop(int64 ncall_);
  void post_loop();

  Vegas(int cdim, int cnbin, int ddim, int adim, const int nvals[], int fn_, Integrand fxn = 0, int ncpu_ =
1);
  virtual ~Vegas() { }



  // the following two functions are questionable from a design perspective and may not 
  // be available in the next major version (i.e. versions 2.0.0 and higher)
  void set_parameters(int cdim, int cnbin, int ddim, int adim, const int nvals[], int fn_);
  void set_integrand(Integrand fxn);

  // results since last adaptation
  double get_integral(int fn_) const ;
  double get_error(int fn_) const ;
  double get_redchi2(int fn_) const ; // "reduced chi^2" = chi^2/(nr of estimates-1)
  int get_niter() const ; // nr of estimates/iterations

  // accumulated results
  double get_acc_integral(int fn_) const ;
  double get_acc_error(int fn_) const ;
  double get_acc_redchi2(int fn_) const ; // "reduced chi^2" = chi^2/(nr of estimates-1)
  int get_acc_niter() const ; // nr of estimates/iterations

  // save and read weights information and configuration (possibly multiple times)
  void save(const char* filename = "vegas.dat") const ;
  void save(std::ofstream& fout) const ;
  void restore(Integrand fxn, const char* filename = "vegas.dat");
  void restore(Integrand fxn, std::ifstream& fin);
  void restore(std::ifstream& fin); // integrand set with set_integrand()

  friend std::ostream& operator<<(std::ostream& s, const Vegas& v);
  friend std::istream& operator>>(std::istream& s,       Vegas& v);

  // digital watermark with version information
  void print_version() const ;

  // use with caution
  void set_niter(int i);



private:
  // ...
};

2.7: Vegas implementation
The complete C++ source code can be found in file src/dvegas.cpp.

Next chapter●   

Previous chapter●   

Table of contents●   



Next chapter●   

Previous chapter●   

Table of contents●   

Chapter 3: Fortran Interface

3.1: VEGAS mode (default)

3.1.1: Subroutines

Program snippet that shows how to define the integrand subroutine (named fxn here):

      EXTERNAL fxn
      [ main program ]

      SUBROUTINE fxn(x, k, wgt, aux, f)
      IMPLICIT NONE 
      DOUBLE PRECISION x(5), wgt, aux(1), f(1)
      INTEGER k(1)
      [...]
      END

The array x contains the random numbers for the continuous dimensions, the array k contains the
random numbers for the discrete dimensions, the array aux contains the auxilliary random numbers.
The VEGAS weight (For each iteration the sum of the weights is normalized to 1.) is passed in variable
wgt, so that it can be passed on to routines that fill histograms, for example. The subroutine fxn is
expected to fill the array f with the function values that correspond to the arguments x(1), x(2), ...,
k(1), k(2), ... and aux(1), aux(2), ... The value of the first function is assigned to f(1). The
integration is optimized for this function according to the VEGAS algorithm. Secondary functions can
simultaneously be integrated and their values are expected to be returned as f(2), f(3), etc.

First this subroutine has to be called:

      CALL dvegas_init(cdim, nsdim, cnbin, ddim, adim, nvals, fn, fxn)

which sets the following (internal) INTEGER variables:

cdim: number of continuous dimensions
nsdim: number of non-separable continuous dimensions (first nsdim dimensions)
cnbin: number of bins for each continuous dimension
ddim: number of discrete dimensions
adim: number of auxilliary dimensions (no adaptation)
nvals: array: number of values for each discrete dimension (see below)
fn: number of functions to integrate, (weights are adapted for first function)
fxn: integrand subroutine (this is a subroutine identifier, not an INTEGER variable)

The default integration/summation range is



●   for continuous dimensions: (0, 1)

●   for discrete dimensions: {0, 1, 2, ..., nvals(dim)-1}

Random numbers in (0, 1) are provided to facilitate the addition of auxilliary dimensions that are not
VEGAS driven.

The parameters ddim or adim can be set to zero if no discrete or auxilliary dimensions are needed.

Optional initialization calls:

      CALL dvegas_init_parallel(ncpu)

specify number of CPUs for multiprocessor machines (ncpu <= 4, see section 5.1)

      CALL dvegas_init_output()

save status (init. parameters and weights) to file dvegas.dat-new after next dvegas call

      CALL dvegas_init_files(outputfile, inputfile)

restore previously saved status from file inputfile and save new status to file outputfile

After dVegas has been initialized you can make multiple calls to dvegas:

      CALL dvegas(ncall, iterats, init, integral, error, redchi2)

ncall: INTEGER*8 (!), request ncall shots per iteration
iterats, init: INTEGER, request iterats iterations, init is explained below
integral, error, redchi2: DOUBLE PRECISION arrays, pass accumulated results, errors and "reduced
chi^2" = chi^2/(nr of estimates-1)

The parameter init has the same meaning as in the original VEGAS program:

init = 0: fresh start (no prior information)
init = 1: use previous adaptation info, but discard shot data
init = 2: use previous adaptation info and build on previous shots data

3.1.2: Sample program

      PROGRAM TESTDVEGAS
      IMPLICIT NONE 
      INTEGER nvals(1)
      INTEGER*8 ncalls
      DOUBLE PRECISION integral(1), error(1), redchi2(1)
      CHARACTER*20 outputfile, inputfile
      EXTERNAL fxn2
      nvals(1) = 100
      ncalls = 100000

      CALL dvegas_init(5, 0, 50, 1, 0, nvals, 1, fxn2)
*     2 iterations with init = 0, no initial adaptation
      CALL dvegas(ncalls, 2, 0, integral, error, redchi2)
*     result is 199.0



      WRITE(*,*) 'Result:'
      WRITE(*,*) 'integral = ', integral(1)
      WRITE(*,*) 'error    = ', error(1)
      WRITE(*,*) 'chi2/itn = ', redchi2(1)
      WRITE(*,*) ' '
*     now 1 iteration with init = 1, use previous adaptation
*     save grid
      CALL dvegas_init_output()
      CALL dvegas(ncalls, 1, 1, integral, error, redchi2)
*     now another run after restoring adaptation from file
      outputfile = 'run2.out'
      inputfile  = 'run2.in'
      CALL dvegas_init_files(outputfile, inputfile)
      CALL dvegas(ncalls, 1, 1, integral, error, redchi2)
      END
      
      SUBROUTINE fxn2(x, k, wgt, aux, f)
      IMPLICIT NONE 
      DOUBLE PRECISION x(5), wgt, aux(1), f(1)
      INTEGER k(1)
      
      IF (k(1) .LT. 99) THEN
         f(1) =   1 * x(1)*x(2)*x(3)*x(4)*x(5)* 2.0**5
      ELSE IF (k(1) .EQ. 99) THEN 
         f(1) = 100 * x(1)*x(2)*x(3)*x(4)*x(5)* 2.0**5
      END IF 
      END

3.2: GetPut mode

3.2.1: Subroutines

First this subroutine has to be called:

      CALL dvegas_init(cdim, nsdim, cnbin, ddim, adim, nvals, fn)

which sets the following (internal) INTEGER variables:

cdim: number of continuous dimensions
nsdim: number of non-separable continuous dimensions (first nsdim dimensions)
cnbin: number of bins for each continuous dimension
ddim: number of discrete dimensions
adim: number of auxilliary dimensions (no adaptation)
nvals: array: number of values for each discrete dimension (see below)
fn: number of functions to integrate, (weights are adapted for first function)

The default integration/summation range is

●   for continuous dimensions: (0, 1)

●   for discrete dimensions: {0, 1, 2, ..., nvals(dim)-1}

Random numbers in (0, 1) are provided to facilitate the addition of auxilliary dimensions that are not



VEGAS driven.

The parameters ddim or adim can be set to zero if no discrete or auxilliary dimensions are needed.

To specify filenames for subsequent dvegas_save and dvegas_restore calls, use

      CALL dvegas_init_files(outputfile, inputfile)

The defaults are dvegas.dat-new and dvegas.dat, respectively.

After dVegas has been initialized one can build iteration blocks as follows:

      DO itn = 1, iterats
         [...]
         CALL dvegas_before_iteration(ncall, init)
         DO i = 1, ncall
            CALL dvegas_get(x, k, wgt, aux)
            f(1) = fxn(x, k, aux)
            CALL dvegas_put(f)
         END DO 
         CALL dvegas_after_iteration()
      END DO 
      CALL dvegas_result(integral, error, redchi2)
      [or CALL dvegas_acc_result(integral, error, redchi2)]
      [...]
      CALL dvegas_end()

Subroutine argument types:

ncall: INTEGER*8 (!)
init: INTEGER, explained below

x, aux, f: DOUBLE PRECISION arrays, random variables and function values, explained below
k: INTEGER array, random variables, explained below
wgt: DOUBLE PRECISION, VEGAS weight

integral, error, redchi2: DOUBLE PRECISION arrays, pass accumulated results, errors and "reduced
chi^2" = chi^2/(nr of estimates-1)

The parameter init has the same meaning as in the original VEGAS program:

init = 0: fresh start (no prior information)
init = 1: use previous adaptation info, but discard shot data
init = 2: use previous adaptation info and build on previous shots data

The get and put subroutines retrieve the random variables and return the function values:

      CALL dvegas_get(x, k, wgt, aux)

      CALL dvegas_put(f)

The array x contains the random numbers for the continuous dimensions, the array k contains the
random numbers for the discrete dimensions, the array aux contains the auxilliary random numbers.
The VEGAS weight (For each iteration the sum of the weights is normalized to 1.) is passed in variable



wgt, so that it can be used, for example, for routines that fill histograms. The array f is expected to be
filled with the function values that correspond to the arguments x(1), x(2), ..., k(1), k(2), ... and
aux(1), aux(2), ... The value of the first function is assigned to f(1). The integration is optimized
for this function according to the VEGAS algorithm. Secondary functions can simultaneously be
integrated and their values are expected to be passed as f(2), f(3), etc.

Persistence: The status of dVegas can be saved and restored later with these two calls:

      CALL dvegas_save()

      CALL dvegas_restore()

dvegas_save saves the dVegas status (init. parameters and weights) to file dvegas.dat-new.
dvegas_restore restores a previously saved status from file dvegas.dat. Other filenames can be
specified with dvegas_init_files, see above.

3.2.2: Sample program

      PROGRAM TESTDVEGAS
      IMPLICIT NONE 
      INTEGER nvals(1)
      INTEGER*8 ncalls
      DOUBLE PRECISION integral(1), error(1), redchi2(1)
      CHARACTER*20 outputfile, inputfile

      INTEGER i, init, itn
      DOUBLE PRECISION fxn2
      DOUBLE PRECISION x(5), wgt, aux(1), f(1)
      INTEGER k(1)
      
      nvals(1) = 100
      ncalls = 100000

      CALL dvegas_init(5, 0, 50, 1, 0, nvals, 1)
*     2 iterations with init = 0, no initial adaptation
      DO itn = 1, 2
         init=1
         IF (i .EQ. 1) init=0
         CALL dvegas_before_iteration(ncalls, init)
         DO i = 1, ncalls
            CALL dvegas_get(x, k, wgt, aux)
            f(1) = fxn2(x, k)
            CALL dvegas_put(f)
         END DO 
         CALL dvegas_after_iteration()
      END DO 
      CALL dvegas_result(integral, error, redchi2)
*     CALL dvegas_acc_result(integral, error, redchi2)
*     result is 199.0
      WRITE(*,*) 'Result:'



      WRITE(*,*) 'integral = ', integral(1)
      WRITE(*,*) 'error    = ', error(1)
      WRITE(*,*) 'chi2/itn = ', redchi2(1)
      WRITE(*,*) ' '
*     now 1 iteration with init = 1, use previous adaptation
*     save grid
      CALL dvegas_before_iteration(ncalls, 1)
      DO i = 1, ncalls
         CALL dvegas_get(x, k, wgt, aux)
         f(1) = fxn2(x, k)
         CALL dvegas_put(f)
      END DO 
      CALL dvegas_after_iteration()
      CALL dvegas_save()
*     now another run after restoring adaptation from file
      outputfile = 'run2.out'
      inputfile  = 'run2.in'
      CALL dvegas_init_files(outputfile, inputfile)
      CALL dvegas_restore()
      CALL dvegas_before_iteration(ncalls, 1)
      DO i = 1, ncalls
         CALL dvegas_get(x, k, wgt, aux)
         f(1) = fxn2(x, k)
         CALL dvegas_put(f)
      END DO 
      CALL dvegas_after_iteration()
      CALL dvegas_save()
      CALL dvegas_end()
      END
      
      DOUBLE PRECISION FUNCTION fxn2(x, k)
      IMPLICIT NONE 
      DOUBLE PRECISION x(5)
      INTEGER k(1)
      
      IF (k(1) .LT. 99) THEN
         fxn2 =   1 * x(1)*x(2)*x(3)*x(4)*x(5)* 2.0**5
      ELSE IF (k(1) .EQ. 99) THEN 
         fxn2 = 100 * x(1)*x(2)*x(3)*x(4)*x(5)* 2.0**5
      END IF 
      END

Next chapter●   

Previous chapter●   

Table of contents●   



Next chapter●   

Previous chapter●   

Table of contents●   

Chapter 4: C Interface

4.1: Functions
The integrand function has to be defined with the following arguments:

typedef void (*C_Integrand)(double x[], int k[], double* wgt,
                            double aux[], double f[]);

void fxn(double x[], int k[], double* wgt, double aux[], double f[]);

The array x[] contains the random numbers for the continuous dimensions, the array k[] contains the
random numbers for the discrete dimensions, the array aux[] contains the auxilliary random numbers. The
VEGAS weight (For each iteration the sum of the weights is normalized to 1.) is passed in variable wgt, so
that it can be passed on to functions that fill histograms, for example. The function *fxn is expected to fill the
array f[] with the function values that correspond to the arguments x[0], x[1], ..., k[0], k[1], ... and
aux[0], aux[1], ... The value of the first function is assigned to f[0]. The integration is optimized for this
function according to the VEGAS algorithm. Secondary functions can simultaneously be integrated and their
values are expected to be returned as f[1], f[2], etc.

First this function has to be called:

void dvegas_init_(int* cdim, int* nsdim, int* cnbin, int* ddim, int* adim,
                  int nvals[], int* fn, C_Integrand fxn);

which sets the following (internal) variables:

cdim: number of continuous dimensions
nsdim: number of non-separable continuous dimensions (first nsdim dimensions)
cnbin: number of bins for each continuous dimension
ddim: number of discrete dimensions
adim: number of auxilliary dimensions (no adaptation)
nvals[]: number of values for each discrete dimension (see below)
fn: number of functions to integrate
fxn: pointer to integrand function

The default integration/summation range is

●   for continuous dimensions: (0, 1)

●   for discrete dimensions: {0, 1, 2, ..., nvals[dim]-1}

Random numbers in (0, 1) are provided to facilitate the addition of auxilliary dimensions that are not VEGAS
driven.

The parameters ddim or adim can be set to zero if no discrete or auxilliary dimensions are needed.

Optional initialization calls:



void dvegas_init_parallel_(int* ncpu);

specify number of CPUs for multiprocessor machines (see section 5.1)

void dvegas_init_output_();

save status (init. parameters and weights) to file dvegas.dat-new after next dvegas_ call

void dvegas_init_files_(char* outfile_, char* infile_, int outfile_len,
                        int infile_len);

restore previously saved status from file inputfile and save new status to file outputfile
Comment: The arguments outfile_len and infile_len are not really necessary in C, because C strings
are NULL terminated. Fortran strings are unfortunately not terminated. Thus, in a C program it is sufficient
that the values passed for outfile_len and infile_len are equal or larger than the actual string sizes.
The exact values are irrelevant.

After dVegas has been initialized you can make multiple calls to dvegas_:

void dvegas_(longint* ncall, int* iterats, int* init, double integral[],
             double error[], double redchi2[]);

ncall: type longint, request ncall shots per iteration
iterats, init: request iterats iterations, init is explained below
integral[], error[], redchi2[]: accumulated results, errors and "reduced chi^2" = chi^2/(nr of estimates-1)

The parameter init has the same meaning as in the original VEGAS program:

init = 0: fresh start (no prior information)
init = 1: use previous adaptation info, but discard shot data
init = 2: use previous adaptation info and build on previous shots data

4.2: C header
The C header include/c_dvegas.h needs to be included in each program that uses dVegas. The C interface is
implemented in src/c_dvegas.cpp. Note that c_dvegas does not stand for "C language dVegas", but rather for
"C linkage dVegas", and is also the basis of the Fortran interface.

4.3: Sample program

#include <math.h>
#include <stdio.h>
#include "c_dvegas.h"

void fxn2(double x[], int k[], double* wgt, double aux[], double f[]);

int main()
{
  int cdim  =  5 ;
  int nsdim =  0 ;
  int cnbin = 50 ;
  int ddim  =  1 ;
  int adim  =  0 ;
  int nvals[1] = { 100 };



  int fn    =  1 ;

  longint ncalls = 100000 ;
  int iterats ;
  int init ;
  double integral[1];
  double error[1];
  double redchi2[1];
  char inputfile[21] = "run2.in" ;
  char outputfile[21] = "run2.out" ;
  
  dvegas_init_(&cdim, &nsdim, &cnbin, &ddim, &adim, nvals, &fn, fxn2);
  /* 2 iterations with init = 0, no initial adaptation */
  iterats = 2 ; init = 0 ;
  dvegas_(&ncalls, &iterats, &init, integral, error, redchi2);
  /* result is 199.0 */
  printf("Result:\n");
  printf("integral = %f\n", integral[0]);
  printf("error    = %f\n", error[0]);
  printf("chi2/itn = %f\n\n", redchi2[0]);
  fflush(NULL);
  /* now 1 iteration with init = 1, use previous adaptation */
  iterats = 1 ; init = 1 ;
  /* save grid                                              */
  dvegas_init_output_();
  dvegas_(&ncalls, &iterats, &init, integral, error, redchi2);
  /* now another run after restoring adaptation from file */
  dvegas_init_files_(outputfile, inputfile, 20, 20);
  dvegas_(&ncalls, &iterats, &init, integral, error, redchi2);
}

void fxn2(double x[], int k[], double* wgt, double aux[], double f[])
{
  if (k[0] < 99)
    f[0] =   1.0 * x[0]*x[1]*x[2]*x[3]*x[4]*pow(2.0,5.0);
  else if (k[0] == 99)
    f[0] = 100.0 * x[0]*x[1]*x[2]*x[3]*x[4]*pow(2.0,5.0);
}

Next chapter●   

Previous chapter●   

Table of contents●   



Next chapter●   

Previous chapter●   

Table of contents●   

Chapter 5: Parallel dVegas

5.1: Shared memory
multiprocessor machines (SMP)
If a Posix threads implementation exists for your platform you can link
your programs with the parallel dVegas libraries libdvegas_r.a,
libf_dvegas_r.a, libc_dvegas_r.a (for C++, Fortran and C, respectively)
to take full advantage of multiprocessor machines. "_r" stands for
reentrant. Note that these libraries are not reentrant themselves, rather
the "_r" suffix is introduced to remind you that when using the parallel
libraries the integrand function/subroutine has to be reentrant, aka
thread-safe and MT-safe. Reentrant essentially means that several
copies of a function can be executed simultaneously without interfering
with each other. If this is not the case the program will crash or yield
arbitrary results.

C++ and C functions that do not write to global variables or use local
variables declared "static" are typically reentrant. Fortran subroutines
can present more problems. Some advice:

Variables that appear in a SAVE statement or are initialized in a DATA
statement are always allocated statically and will corrupt the threaded
version. Make sure no values are assigned to COMMON block variables
in the subroutines called by fxn.

If you call Fortran subroutines in fxn make sure that all local variables
are put on the run-time stack by using the corresponding compiler



option, typically -automatic. The default behavior is very likely
static allocation. (The GNU Fortran compiler is an exception to the
rule, with automatic allocation being the default. It has an option
-fno-automatic.)

Note: Static variables (default, -static) are always initialized to default
(or DATA statement) values before the subroutine is executed. Variables
put on the run-time stack (-automatic) are NOT initialized
automatically before the subroutine is executed and thus don't have a
well-defined value until they get a value assigned when an assignment
statement is executed. Using uninitialized variables in expressions (e.g.
on the right side of an assignment statement) triggers floating exception
signals in threads.

The following sections contain platform specific notes about writing
code and creating excetables with the parallel dVegas libraries. Please
report any problems (and solutions) you find when using these libraries,
so that we can address them. See section 1.6 for details.

For documented platforms you might want to run make test and
look at the test programs for the parallel libraries and check out how
they are compiled.

5.1.1: Intel/Linux

No special issues known. Just link with -lpthread.

5.1.2: Alpha/Tru64 Unix

Use -pthread option for all Compaq compilers when compiling or
linking. Use -automatic when compiling or linking with the
Compaq Fortran compiler.



5.2: Workstation clusters
A dVegas library for distributed computing is not yet available.
However, adapting the SMP code for workstation clusters is
straightforward. The standard choice in scientific computing would be
the Message Passing Interface (MPI). However, I believe that a
CORBA-based solution would be easier to install and use, as well as
more flexible and transparent. In spring 2002, I plan to integrate
dVegas into a truly component-oriented, multi-process, CORBA-based
architecture for Monte Carlo computations using the free,
high-performance implementation from AT&T Laboratories Cambridge
(omniORB). See omnicomp at hepsource.org for a preview. If you are
familiar with MPI and would like to contribute code for MPI, please
contact me.

Next chapter●   

Previous chapter●   

Table of contents●   

http://www-unix.mcs.anl.gov/mpi/mpich/
http://www.corba.org/
http://www.omniorb.org/
http://hepsource.org/omnicomp/


Next chapter●   

Previous chapter●   

Table of contents●   

Chapter 6: Python Class and Interface
Python (www.python.org) is an interpreted, interactive, object-oriented programming language. It is easy to learn, yet
expressive, has a clear, elegant syntax, intuitive error checking facilities and does not require a compilation step. A
Python module with a class implementing the dVegas algorithm and interface is located in subdirectory python/. The
module uses Numerical Python for efficient array handling. The NumPy package can be obtained from
http://numpy.sourceforge.net. An example that demonstrates the use of dVegas.py is included in file demo.py.

The directory python/cpp/ contains a Python module dVegas.py that wraps around the C++ implementation. It can be
used in cases where the performance of the Python implementation is insufficient. To that end the shared library
_dvegasmodule.so has to be created using commands similar to

unix> g++ -c -DSIZEOF_LONG_LONG=8 -I/usr/local/python/include/python1.5
      -I/usr/local/python/include/python1.5/numeric -I../../include -fPIC _dvegasmodule.cpp
unix> g++ -shared -o _dvegasmodule.so _dvegasmodule.o ../../src/dvegas.o -lCLHEP

Next chapter●   

Previous chapter●   

Table of contents●   

http://www.python.org/
http://numpy.sourceforge.net/


Next chapter●   

Previous chapter●   

Table of contents●   

Chapter 7: Frequently
Asked Questions

How do I obtain version information for a dVegas library?
The command strings libdvegas.a | grep
"dVegas version" displays the version on most Unix
systems.

1.  

Next chapter●   

Previous chapter●   

Table of contents●   



Previous chapter●   

Table of contents●   

Chapter 8: References
(with hyperlinks to compressed postscript in HTML version)

N. Kauer, in preparation.1.  

A. Duff, private communication.2.  

R. Kreckel, Comp. Phys. Comm. 106 (1997) 258. PS
R. Kreckel, Mainz preprint (1998) MZ-TH/98-54. PS

3.  

W.H. Press et al., Numerical Recipes in C, 2nd ed., Cambridge
University Press (1992) 319. PS

4.  

G.P. Lepage, J. Comp. Phys. 27 (1978) 192. PS
G.P. Lepage, Cornell preprint (1980) CLNS-80/447. PS

5.  

S. Veseli, Comp. Phys. Comm. 108 (1998) 9. PS6.  

T. Ohl, Comp. Phys. Comm. 120 (1999) 13. PS7.  

Previous chapter●   

Table of contents●   

http://www.arxiv.org/abs/physics/9710028
http://www.arxiv.org/abs/physics/9812011
http://lib-www.lanl.gov/numerical/bookc/c7-8.ps
http://www.slac.stanford.edu/pubs/slacpubs/1750/slac-pub-1839.ps.gz
http://www-lib.kek.jp/cgi-bin/img/tiff2allps?2+compress+198006210
http://fnalpubs.fnal.gov/archive/1997/pub/Pub-97-271-T.ps.gz
http://arxiv.org/ps/hep-ph/9806432

	dVegas User's Guide 1.1
	Table of Contents
	1 Introduction
	2 C++ Class
	3 Fortran Interface
	4 C Interface
	5 Parallel dVegas
	6 Python Interface
	7 FAQ
	8 References


