
Dvegas User's Guide

Nikolas Kauer
<nkauer@users.sourceforge.net>

Version 2.0.0, April 2002

Table of Contents

Chapter 1: Essentials

1.1: About Dvegas

1.2: Platform notes

1.2.1: GNU C++ compiler

1.2.1.1: Linux/i386

1.2.1.2: Tru64 Unix/Alpha

1.2.1.3: Windows2000/i386

1.2.2: Compaq C++ compiler

1.2.2.1: Tru64 Unix/Alpha

1.3: How to get Dvegas

1.4: Using Dvegas

1.5: Random Number Generation

1.5.1: Built-in: ranlux.cpp

1.5.2: Class Library for High Energy Physics (CLHEP)

1.5.3: GNU Scientific Library (GSL)

1.6: Troubleshooting and Support

1.7: Porting Dvegas

1.8: LGPL license

Chapter 2: Dvegas

2.1: Dvegas interface

2.2: Dvegas constructors

2.2.1: Constructor arguments

2.2.2: Function that evaluates f integrands

2.2.3: Constructors

2.3: 64-bit numeric types

2.4: Dvegas methods

2.5: VEGAS function

2.6: Examples

Chapter 3: OmniComp

3.1: Using OmniComp

3.2: Getting started with OmniComp

3.2.1: omniORB headers and libraries

3.2.2: Environment variables

Chapter 4: References

Next chapter●

Table of contents●

Chapter 1: Essentials

1.1: About Dvegas
Dvegas facilitates adaptive Monte Carlo integration based on an enhanced and
extended version of Peter Lepage's VEGAS algorithm. It allows to automatically
take into account correlations between sets of dimensions, and allows to fully adapt
the sampling of sums of integrals. The code is genuinely object-oriented, written in
ISO/ANSI standard C++, makes extensive use of the C++ Standard Library and
includes an interface to OmniComp.

OmniComp is an intuitive system that is easy to install and use which allows to
accelerate Monte Carlo programs through distributed execution on workstation
clusters or PC farms as well as multi- processor machines. It is based on omniORB,
a high-performance, open-source CORBA implementation from AT&T
Laboratories Cambridge. Notably, it does not require thread-safe integrand
implementations.

The D in Dvegas stands for decoded and deconstructed, because the somewhat
cryptic "black box" code of the original VEGAS program and its derivatives was
decoded and the algorithm recoded from scratch, in a modern, highly modular,
const-correct object-oriented way, aggressively applying modern software
development fundamentals and best practices as layed out in Bjarne Stroustrup's
"The C++ Programming Language", Andy Hunt and Dave Thomas's "The
Pragmatic Programmer", Scott Meyers's "Effective C++" and Martin Fowler's
"Refactoring". The resulting code is well-structured, accessible and robust, thus
being well suited for easy and safe modification and extension.

A detailed description of the VEGAS algorithm, its enhanced and extended
implementation in Dvegas, as well as comparisons with and information about
several earlier implementations, can be found in the references listed in section 4.

http://www.omniorb.org/
http://www.amazon.com/exec/obidos/ASIN/0201889544/
http://www.amazon.com/exec/obidos/ASIN/020161622X/
http://www.amazon.com/exec/obidos/ASIN/020161622X/
http://www.amazon.com/exec/obidos/ASIN/0201924889/
http://www.amazon.com/exec/obidos/ASIN/0201485672/

1.2: Platform notes
In principle, Dvegas can be built with any sufficiently standard compliant C++
compiler on any platform. In practice, Dvegas has been sucessfully employed in the
following environments:

1.2.1: GNU C++ compiler

Programs based on Dvegas will compile and link with recent releases (3.x) of the
C++ compiler of the GNU compiler collection, which can be obtained at
http://gcc.gnu.org.

1.2.1.1: Linux/i386

gcc-3.0 on Red Hat Linux 7 with Intel Pentium III, Intel Xeon or AMD Athlon is
known to work.

1.2.1.2: Tru64 Unix/Alpha

gcc-3.0 on Compaq Tru64 Unix 5 with DEC Alpha EV6.7 is known to work.

1.2.1.3: Windows2000/i386

gcc-3.0 on Windows2000 with Pentium III is known to work. See README.win32
for special instructions.

1.2.2: Compaq C++ compiler

The Compaq C++ compiler cxx is available for Alpha platforms with either Tru64
Unix or Linux.
http://www.compaq.com/products/software/compilers/candcxx.html

1.2.2.1: Tru64 Unix/Alpha

Compaq C++ V6.3 on Compaq Tru64 Unix 5 with DEC Alpha EV6.7 is known to
work.

If you are working on Linux/Alpha with either g++ or cxx and find Dvegas to work
please drop me a note.

For up-to-date information about supported platforms visit
http://hepsource.org/dvegas/platforms.html

http://gcc.gnu.org/
http://www.compaq.com/products/software/compilers/candcxx.html
http://hepsource.org/dvegas/platforms.html

1.3: How to get Dvegas
The Dvegas source code can be downloaded as .tar.gz archives or via CVS here:
http://sourceforge.net/projects/hepsource/

The .tar.gz archives can, for example, be unpacked with
gunzip -c dvegas-2.0.0.tar.gz | tar xf -

1.4: Using Dvegas
How to use Dvegas in your programs and its capabilities are illustrated with the
help of two demo programs (also see section 2). Copy the sample Makefile for your
compiler to Makefile, possibly edit it, and run make. If more than one compiler
is installed on your system, make sure the correct compiler is used, i.e. comes first
in your path. The build process will attempt to create the following demo programs:
dvegas_demo and omnicomp_demo

Note that in order to build omnicomp_demo, omniORB headers and libraries need
to be available on your system and the corresponding Makefile variables set
appropriately. Please refer to section 3 for more information.

1.5: Random Number Generation
To allow easy substitution of the random number generator employed by Dvegas,
the RandomNumberGenerator interface defined in rng.h is used. Three
implementations are provided:

1.5.1: Built-in: ranlux.cpp

For convenience, the Dvegas distribution includes code in ranlux.cpp that
provides a default random number generator based on Martin Luscher's chaos
theory-improved RANLUX algorithm, which has excellent characteristics. To vary
the seed go to the top of the file and modify the setting of
seedForGSLRandomNumberGenerator.

1.5.2: Class Library for High Energy Physics (CLHEP)

The Random package of the CLHEP library provides C++ implementations for a
variety of quality random number generators. If CLHEP headers and library are

http://sourceforge.net/projects/hepsource/
http://wwwinfo.cern.ch/asd/lhc++/clhep/manual/UserGuide/Random/Random.html
http://wwwinfo.cern.ch/asd/lhc++/clhep/

available on your system, you can use any CLHEP random number generator by
setting the corresponding Makefile variables appropriately, and linking with
clhep_rng.o instead of ranlux.o. The sample Makefiles include an example.
The default CLHEP random number generator is RANLUX. To select a different
generator, simply replace RanluxEngine in the following line in
clhep_rng.cpp:
RandomNumberGenerator *const randomNumberGenerator = new
CLHEPRandomNumberGenerator(new RanluxEngine(), 19780503,
3);

1.5.3: GNU Scientific Library (GSL)

The Random Number Generation module of the GSL library provides C
implementations for a variety of quality random number generators. If GSL headers
and library are available on your system, you can use any GSL random number
generator by setting the corresponding Makefile variables appropriately, and
linking with gsl_rng.o instead of ranlux.o. The sample Makefiles include an
example. The default GSL random number generator is RANLUX. To select a
different generator, simply replace gsl_rng_ranlxs1 in the following line in
gsl_rng.cpp:
RandomNumberGenerator *const randomNumberGenerator = new
GSLRandomNumberGenerator(gsl_rng_alloc(gsl_rng_ranlxs1),
19780503);

1.6: Troubleshooting and Support
For up-to-date information about Dvegas-related problems and solutions visit
http://hepsource.org/dvegas/troubleshooting.html

Problems not addressed there should be sent to
hepsource-support@lists.sourceforge.net. Comments and suggestions should be
sent to hepsource-devel@lists.sourceforge.net.

1.7: Porting Dvegas
If you want to use Dvegas on a new platform or with a new compiler, please
contact hepsource-devel@lists.sourceforge.net.

http://sources.redhat.com/gsl/ref/gsl-ref_17.html#SEC253
http://sources.redhat.com/gsl/
http://hepsource.org/dvegas/troubleshooting.html
mailto:hepsource-support@lists.sourceforge.net
mailto:hepsource-devel@lists.sourceforge.net
mailto:hepsource-devel@lists.sourceforge.net

1.8: LGPL license
This library is free software; you can redistribute it and/or modify it under the
terms of the GNU Lesser General Public License as published by the Free Software
Foundation; either version 2.1 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.

You should have received a copy of the GNU Lesser General Public License along
with this library; if not, write to the Free Software Foundation, Inc., 59 Temple
Place, Suite 330, Boston, MA 02111-1307 USA

Next chapter●

Table of contents●

Next chapter●

Previous chapter●

Table of contents●

Chapter 2: Dvegas

2.1: Dvegas interface

namespace HepSource
{
class Dvegas
{
public:
 Dvegas(const int aDim, const int f, Integrand *const i);
 Dvegas(const int cDim, const int cBin, const int f, Integrand *const i,
 const Sampling sampling = IMPORTANCE);
 Dvegas(const int cDim, const int cBin, const vector<int>& dDimSizes, const int f,
 Integrand *const i, const Sampling sampling = IMPORTANCE);
 Dvegas(const int cDim, const int cBin, const int corrDim,
 const vector<int>& dDimSizes, const int aDim, const int f, Integrand *const i,
 const Sampling sampling = IMPORTANCE);
 Dvegas(const int cDim, const int cBin, const vector<int>& corrDim,
 const vector<int>& dDimSizes, const int aDim, const int f, Integrand *const i,
 const Sampling sampling = IMPORTANCE);
 Dvegas();
 virtual ~Dvegas();

 CellAccumulators collectData(const Int64 numberOfShots);

 void info() const; // print info about best estimate
 const bool isAdaptingContinuousDimensions() const;
 const double chiSquarePerIteration() const;

 void adapt(CellAccumulators& cellAcc); // adapt weights
 const double getCurvature() const;
 void setCurvature(const double curvature);
 const double getRootAmpl() const;
 void setRootAmpl(const double rootAmpl);

 void disableOptimize(const int setOfCorrelatedWeights);

 void reset(); // discard all data
 void resetWeights();
 void resetEstimates();

 void saveStateToFile(const string& filename = "dvegas.state") const;
 void restoreStateFromFile(Integrand *const i, const string& filename = "dvegas.state");
 void restoreWeightsFromFile(Integrand *const i, const string& filename = "dvegas.state");
 void saveStateToStream(ostream& os) const;
 void restoreStateFromStream(Integrand *const i, istream& is);
 void restoreWeightsFromStream(Integrand *const i, istream& is);
 const string saveStateToString() const;
 void restoreStateFromString(Integrand *const i, const string& s);
 void restoreWeightsFromString(Integrand *const i, const string& s);

 void activateCorrelationsDetector();

 void attachOmniComp(OmniComp *const omniComp);

 void detachOmniComp();

 void printVersion() const;
};
}

2.2: Dvegas constructors

2.2.1: Constructor arguments

cDim: int
number of adapted continuous dimensions

cBin: int
resolution of adaptation (number of bins)

corrDim: vector<int>
defines sets of continuous dimensions for which the adaptation fully takes correlations into account
Example: cDim = 8 and corrDim = {3, 5}: set1 = {0, 1, 2}, set2 = {3, 4}, correlations not sampled for 5, 6, 7

dDimSizes: vector<int>
defines discrete dimensions
Example: dDimSizes = {3, 5}: two discrete dimensions with index1 in {0, 1, 2} and index2 in {0, 1, 2, 3, 4}

aDim: int
number of "auxilliary" (i.e. non- adapted) continuous dimensions

f: int
number of integrands to be evaluated (first integrand drives adapation, see below)

i: Integrand*
pointer to function that evaluates the integrand(s)

sampling: enum Sampling {NONE, IMPORTANCE, STRATIFIED}

Importance sampling concentrates sampled points in hypercubes that contribute most to the integral.
Stratified sampling concentrates sampled points in hypercubes that contribute most to the error of the integral.

The integration range for adapted and auxilliary continuous dimensions is (0, 1).

Note that, except for i, all arguments can be zero (or empty vector), thus disabling the particular functionality.

2.2.2: Function that evaluates f integrands

typedef void Integrand(const double x[], const int k[], const double& weight,
 const double aux[], double f[]);

x: double array (in)
contains cDim random floats in (0, 1) and thus covers the integration volume for the adapted continuous dimensions

k: int array (in)
contains dDimSizes.size() random integers in [0, dDimSizes[j]) with j = 0, ...,
dDimSizes.size() - 1
covering all possible index combinations for the discrete dimensions

weight: double (in)
weight of the sampled point, which may, for example, be used to fill histograms
Note that by default the weight is normalized in each iteration to yield the average integrand value--corresponding to the
value of the integral (assuming unit volume)--rather than the sum.

aux: double array (in)
contains aDim random numbers in (0, 1) that have no effect on the adaptation

f: double array (out)
passes back f floats obtained by evaluating each integrand at the point specified by the input parameters
Note that the first integrand (i.e. values passed back through f[0]) drives the adaptation.
Depending on how similar the other integrands are to the first the adapted sampling may or may not be well suited for
them.

2.2.3: Constructors

Dvegas(const int aDim, const int f, Integrand *const i);

"Crude", unadapted Monte Carlo sampling.

Dvegas(const int cDim, const int cBin, const int f, Integrand *const i,
 const Sampling sampling = IMPORTANCE);

Classic VEGAS case: the sampling is adapted for a number of continuous dimensions that are assumed to be independent.

Dvegas(const int cDim, const int cBin, const vector<int>& dDimSizes, const int f,
 Integrand *const i, const Sampling sampling = IMPORTANCE);

Full adaptation for sums of integrals.

Dvegas(const int cDim, const int cBin, const int corrDim,
 const vector<int>& dDimSizes, const int aDim, const int f, Integrand *const i,
 const Sampling sampling = IMPORTANCE);

Exclude "auxilliary" dimensions from adaptation.

Dvegas(const int cDim, const int cBin, const vector<int>& corrDim,
 const vector<int>& dDimSizes, const int aDim, const int f, Integrand *const i,
 const Sampling sampling = IMPORTANCE);

Relax independence assumption for continuous dimensions and fully sample correlations for selected dimensions.

Dvegas();

Use default constructor to subsequently initialize with restoreStateFromStream() or a similar method.

2.3: 64-bit numeric types
The following type aliases are defined:

#if (defined LONG_IS_INT64) && (!defined LONG_LONG_IS_INT64)
typedef long int Int64;
#elif (defined LONG_LONG_IS_INT64) && (!defined LONG_IS_INT64)
typedef long long int Int64;
#endif
typedef double Float64;

The type alias Int64 corresponds to 64-bit integers, which allow for a maximum of 2^63 - 1 = 9,223,372,036,854,755,807
sampled points. Note that 32-bit integers only allow up to about 2 billion sampled points (2^31 - 1 = 2,147,483,647 to be
precise), which in some cases may not suffice to achieve the desired precision. On 32-bit processor hardware including most
Intel and AMD processors (i386 architecture), the macro LONG_LONG_IS_INT64 should be defined. On 64-bit processor
hardware, on the other hand, like DEC's Alpha, Intel's Itanium or AMD's Sledgehammer processor, the macro
LONG_IS_INT64 should be defined (see Makefile).

The type alias Float64 corresponds to 64-bit floating point numbers and is used internally for variables that accumulate a
large number of temporary results (of O(numberOfShots)). 32-bit floating point numbers provide only a precision of
typically 7 decimal digits, which can be insufficient when adding about 100 million numbers or more. For 64-bit floating point
numbers with a precision of typically 15 decimal digits this problem occurs roughly at 10^16 additions. On most platforms the
type double corresponds to 64-bit floating point numbers. In rare cases Float64 might correspond to long double. In
this case the typedef should be adjusted accordingly. (Note that this issue is also relevant for histogram packages.)

2.4: Dvegas methods

CellAccumulators collectData(const Int64 numberOfShots);
void adapt(CellAccumulators& cellAcc);

Method collectData() samples numberOfShots points in the integration volume, i.e. advances the Monte Carlo

integration by one iteration and returns data accumulated for each cell in an object of type CellAccumulators. This object
is subsequently passed to method adapt(), which adapts all weights, and thus improves the sampling in the next iteration.

void info() const;

At any time method info() can be used to print out information regarding the currently best estimate for the integral(s).

const double getCurvature() const;
void setCurvature(const double curvature);
const double getRootAmpl() const;
void setRootAmpl(const double rootAmpl);

The parameters curvature and rootAmpl ("root amplification") control the promotion of smaller weights, which damps
the adaptation in order to avoid oscillations. See implementation of helper function promoteSmallerWeights() in
dvegas.cpp for details.

void disableOptimize(const int setOfCorrelatedWeights);

If correlations are sampled, an optimization is performed before the sampling occurs. In rare cases the optimization step
requires more time than is subsequently saved. In such cases the optimization can be turned off with the
disableOptimize() method.

void reset();
void resetWeights();
void resetEstimates();

reset() discards all state-related internal data, reverting the object back to the state immediately after construction.

void saveStateToFile(const string& filename = "dvegas.state") const;
void restoreStateFromFile(Integrand *const i, const string& filename = "dvegas.state");
void restoreWeightsFromFile(Integrand *const i, const string& filename = "dvegas.state");
void saveStateToStream(ostream& os) const;
void restoreStateFromStream(Integrand *const i, istream& is);

void restoreWeightsFromStream(Integrand *const i, istream& is);
const string saveStateToString() const;
void restoreStateFromString(Integrand *const i, const string& s);
void restoreWeightsFromString(Integrand *const i, const string& s);

Methods are provided to save Dvegas objects to a stream, file or string and subsequently restore the saved state
(or the most recent weights without the integral estimates of previous iterations).

void activateCorrelationsDetector();

By calling activateCorrelationsDetector() a separate module is activated that, during the following iteration,
probes (for the first integrand) to what degree combinations of two dimensions are independent (as assumed by the VEGAS
algorithm). If strong correlations are detected, they can then be fully sampled by setting corrDim accordingly. Circular
correlations should be properly combined, e.g. the correlations {0, 1} and {1, 2} translate to the set {0, 1, 2}.

void attachOmniComp(OmniComp *const omniComp);
void detachOmniComp();

Before distributed integrand evaluation can be used to accelerate computations, an OmniComp object needs to be attached to
the Dvegas object with attachOmniComp (see section 3 for more on OmniComp).

const bool isAdaptingContinuousDimensions() const;
const double chiSquarePerIteration() const;

These getter methods are used in VEGAS() for diagnostic warnings (see section 2.5).

2.5: VEGAS function

namespace HepSource
{
void VEGAS(Dvegas& dvegas, const Int64 numberOfShots, const int numberOfIterations,
 const int init = 0);

}

This function mimics the interface of the original VEGAS program. The parameter init has the following meaning:

init = 0
fresh start--discard all weight and estimate information

init = 1
use current weights, but discard prior estimates

init = 2
use current weights and take into account estimates of previous iterations

2.6: Examples
A comprehensive set of examples can be found in the file dvegas_demo.cpp.

Next chapter●

Previous chapter●

Table of contents●

Next chapter●

Previous chapter●

Table of contents●

Chapter 3: OmniComp
OmniComp is an intuitive system that is easy to install and use which allows to accelerate Monte
Carlo programs through distributed execution on workstation clusters or PC farms as well as
multi- processor machines. It is based on omniORB, a high-performance, open-source CORBA
implementation from AT&T Laboratories Cambridge. Notably, it does not require thread-safe
integrand implementations.

3.1: Using OmniComp
Usage examples:

host3> ssh -n host1 /path1/omnicomp_prog -w &
host3> ssh -n host2 /path2/omnicomp_prog -w &
host3> ssh -n host2 /path2/omnicomp_prog -w &
host3> /path3/omnicomp_prog
master process started (includes 1 worker)
3 additional worker(s) found
work done so far ...
0% 0% 0% 0%

Here, host1 and the local host are assumed to be single-processor machines, while host2 is
assumed to be a dual-processor system. The working directory with the executable file
omnicomp_prog is assumed to be shared between host1, host2 and the local host. This is
convenient but not necessary (see -n option below). If ssh asks for a password on the command
line try ssh -f instead of ssh -n.

Since the master process contains its own worker one can also start just one instance of the
executable with no options and it will run like a regular, non-distributed program:

host> /path/omnicomp_prog
master process started (includes 1 worker)
no additional workers found
work done so far ...
0%

If different executables are required on different hosts, for example because they run different
operating systems, the executables can be distinguished with a ".<key>" postfix. One needs to
use the -d option in this case. It causes the postfix to be disregarded when the *.workers file

http://www.omniorb.org/

name is determined:

host3> ssh -n host1 /path1/omnicomp_prog.os1 -w -d &
host3> ssh -n host2 /path2/omnicomp_prog.os2 -w -d &
host3> ssh -n host2 /path2/omnicomp_prog.os2 -w -d &
host3> /path3/omnicomp_prog.os3 -d

One can disable the collocated worker in the local master process with the -m option. In this
mode the master process controls the other workers, monitors progress and collects results, but
does not participate in the computation itself.

If no shared directory mounted on all machines is available the distributed computation can be
bootstrapped using the naming service (-n option). After setting up the environment for naming
service as described in section 3.2.2, the server needs to be started on the host specified in
omniORB.cfg by executing omniNames. Then, for example for tcsh:

host4> ssh -n host1 "tcsh -c '/path1/omnicomp_prog -w -n'" &
host4> ssh -n host2 "tcsh -c /path2/omnicomp_prog -w -n'" &
host4> ssh -n host3 "tcsh -c /path3/omnicomp_prog -w -n'" &
host4> /path4/omnicomp_prog -n

If your remote shell account is not set up to access the naming service you can also include the
information on the command line:

host4> ssh -n host1 /path1/omnicomp_prog -w -n
 -ORBInitRef NameService=corbaname::names.example.edu &
host4> ssh -n host2 /path2/omnicomp_prog -w -n
 -ORBInitRef NameService=corbaname::names.example.edu &
host4> ssh -n host3 /path3/omnicomp_prog -w -n
 -ORBInitRef NameService=corbaname::names.example.edu &
host4> /path4/omnicomp_prog -n

Here, names.example.edu is the hostname of the system that provides the naming service.

It is important to use the same set of omnicomp options (except for -w and -m) in all commands
else errors will likely occur. If that happens the naming service can be cleaned up with nameclt,
an omniORB client program to inspect and modify the naming service registry.

3.2: Getting started with OmniComp

3.2.1: omniORB headers and libraries

In order to build OmniComp executables one needs to link with omniORB libraries. These have
been pre-built for a number of common platforms including Intel/Linux and can be downloaded
for free at
http://www.uk.research.att.com/omniORB/omniORBForm.html

If no pre-built libraries are available for your platform they can easily be built from source with a

http://www.uk.research.att.com/omniORB/omniORBForm.html

few steps:

Find the configuration that best matches your platform (and compiler!) in
./mk/platforms/ and uncomment the corresponding line in
./config/config.mk, for example: platform = alpha_osf1_5.0

1.

In the selected configuration file in ./mk/platforms/ edit the line that sets PYTHON
and insert the path to your python interpreter, e.g. /usr/local/bin/python. If
Python 1.5.2 or higher is not installed on your system follow the instructions in the file.

2.

change to ./src and make export (ignore the warnings) This step requires about 90MB
and takes about 40 minutes on a PentiumII/333MHz.

3.

make clean4.

You're done. The built libraries and binaries consume about 20MB disk space.

3.2.2: Environment variables

Example commands for shell initialization (assuming tcsh and Linux):

omniorb libraries and executables
setenv OMNIORB_TOPDIR ${HOME}/omniorb/omni
setenv LD_LIBRARY_PATH
${LD_LIBRARY_PATH}:${OMNIORB_TOPDIR}/lib/i586_linux_2.0_glibc2.1
setenv PATH ${PATH}:${OMNIORB_TOPDIR}/bin/i586_linux_2.0_glibc2.1

If your omnicomp programs will be located in a shared directory that is mounted on all
computers no further steps are necessary.

Otherwise the computation has to be bootstrapped with omniNames (option -n) and one also
needs:

omniorb naming service (omniNames)
setenv OMNINAMES_LOGDIR ${HOME}/omniorb/names_log
setenv OMNIORB_CONFIG ${HOME}/omniorb/omniORB.cfg

OMNINAMES_LOGDIR specifies the log directory for omniNames and is only required in the
shell that is used to start omniNames. The log directory and files are created when omniNames
is started for the first time.

File omniORB.cfg indicates on which computer omniNames will be run. Example with
default port number:

ORBInitialHost names.example.edu
ORBInitialPort 2809

Next chapter●

Previous chapter●

Table of contents●

Previous chapter●

Table of contents●

Chapter 4: References
(with hyperlinks to compressed postscript in HTML version)

N. Kauer, in preparation.1.

B. Stroustrup, The C++ Programming Language, 3rd ed.,
Addison-Wesley, 1997. Amazon

2.

A. Hunt and D. Thomas, The Pragmatic Programmer,
Addison-Wesley, 1999. Amazon

3.

S. Meyers, Effective C++, 2nd ed., Addison-Wesley, 1997.
Amazon

4.

M. Fowler, Refactoring, Addison-Wesley, 1999. Amazon5.

M. Luscher, Comp. Phys. Comm. 79 (1994) 100. PS6.

G.P. Lepage, J. Comp. Phys. 27 (1978) 192. PS
G.P. Lepage, Cornell preprint (1980) CLNS-80/447. PS

7.

A. Duff, private communication.8.

R. Kreckel, Comp. Phys. Comm. 106 (1997) 258. PS
R. Kreckel, Mainz preprint (1998) MZ-TH/98-54. PS

9.

W.H. Press et al., Numerical Recipes in C, 2nd ed., Cambridge
University Press (1992) 319. PS

10.

S. Veseli, Comp. Phys. Comm. 108 (1998) 9. PS11.

T. Ohl, Comp. Phys. Comm. 120 (1999) 13. PS12.

Previous chapter●

Table of contents●

http://www.amazon.com/exec/obidos/ASIN/0201889544/
http://www.amazon.com/exec/obidos/ASIN/020161622X/
http://www.amazon.com/exec/obidos/ASIN/0201924889/
http://www.amazon.com/exec/obidos/ASIN/0201485672/
http://arxiv.org/ps/hep-lat/9309020
http://www.slac.stanford.edu/pubs/slacpubs/1750/slac-pub-1839.ps.gz
http://www-lib.kek.jp/cgi-bin/img/tiff2allps?2+compress+198006210
http://www.arxiv.org/abs/physics/9710028
http://www.arxiv.org/abs/physics/9812011
http://lib-www.lanl.gov/numerical/bookc/c7-8.ps
http://fnalpubs.fnal.gov/archive/1997/pub/Pub-97-271-T.ps.gz
http://arxiv.org/ps/hep-ph/9806432

	Dvegas User's Guide 2.0
	Table of Contents
	1 Essentials
	2 Dvegas
	3 OmniComp
	4 References

